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I. METRICS

We use several metrics (in SI units) to evaluate and compare
the performance of RMA against baselines:

• Success Rate: Average rate of successfully completing the
task as defined in the next section.

• Time to Fall (TTF): Measures the time before a fall. We
divide it by the maximum duration of the episode and
report a normalized value between 0 and 1.

• Reward: Average step forward reward plus lateral reward
over multiple episodes as defined in Section III-A RL
Rewards of the main paper.

• Distance: Average distance covered in an episode. For
real-world experiments, we report the normalized distance,
where we normalize by the maximum distance which is
specific to the task.

• Adaptation Samples: Number of control steps to explore
in the testing environment needed for the motor policy to
adapt.

• Torque: Squared L2 norm of torques at every joint ‖τ t‖2.
• Jerk: Squared L2 norm of delta torques ‖τ t − τ t−1‖2.
• Ground Impact: Squared L2 norm of delta ground reaction

forces at every foot ‖f t − f t−1‖2.

II. ADDITIONAL TRAINING AND DEPLOYMENT DETAILS

The training pipeline is shown in Algorithm 1, and the
deployment pipeline is shown in Algorithm 2.

We use PPO [5] to train the base policy and the environ-
mental factor encoder. We train for total 15, 000 iterations.
During each iteration, we collect a batch of 80, 000 state-action
transitions, which is evenly divided into 4 mini-batches. Each
mini-batch is fed into the base policy and the Environment
Factor Encoder in sequence for 4 rounds to compute the loss
and error back-propagation. The loss is the sum of surrogate
policy loss and 0.5 times the value loss. We clip the action log
probability ratios between 0.8 and 1.2, and clip the target values
to be within the 0.8 − 1.2 times range of the corresponding
old values. We exclude the entropy regularization of the base
policy, but constrain the standard deviation of the parameterized
Gaussian action space to be large than 0.2 to ensure exploration.
λ and γ in the generalization advantage estimation [4] are set
to 0.95 and 0.998 respectively. We use the Adam optimizer
[3], where we set the learning rate to 5e−4, β to (0.9, 0.999),
and ε to 1e−8. The reference implementation can be found in
the RaisimGymTorch Library [1].

If we naively train our agent with the reward function
aggregating all the terms, it learns to fall because of the penalty

Algorithm 1: Rapid Motor Adaptation Training
Phase 1 Randomly initialize the base policy π;

Randomly initialize the environmental factor encoder
µ; Empty replay buffer D1;

for 0 ≤ itr ≤ N1
itr do

for 0 ≤ i ≤ Nenv do
x0, e0 ← envs[i].reset();
for 0 ≤ t ≤ T do

zt ← µ(et);
at ← π(xt, at−1, zt);
xt+1, et+1, rt ← envs[i].step(at);
Store ((xt, et), at, rt, (xt+1, et+1)) in D1;

end
end
Update π and µ using PPO [5];
Empty D1;

end

Phase 2 Randomly initialize the adaptation module φ
parameterized by θφ; Empty mini-batch D2;

for 0 ≤ itr ≤ N2
itr do

for 0 ≤ i ≤ Nenv do
x0, e0 ← envs[i].reset();
for 0 ≤ t ≤ T do

ẑt ← φ(xt−k:k, at−k−1:k−1);
zt ← µ(et);
at ← π(xt, at−1, ẑt);
xt+1, et+1, ← envs[i].step(at);
Store (ẑt, zt) in D2;

end
end
θφ ← θφ − λθφ∇θφ 1

TNenv

∑
‖ẑt − zt‖2;

Empty D2;
end

terms. To prevent this collapse, we follow the strategy described
in [2]. In addition the scaling factors of all reward terms, we
apply a small multiplier kt to the penalty terms 3 − 10, as
defined in Section III-A of the main paper. We start the training
with a very small k0 set to 0.03, and then exponentially increase
the these coefficients using a fixed curriculum: kt+1 = k0.997t ,
where t is the iteration number. The learning process is shown
in Figure 1.



Algorithm 2: Rapid Motor Adaptation Deployment

Process 1 operating at 100 Hz;
t← 0;
while not fall do

at ← π(xt, at−1, ẑasync);
xt+1 ← env.step(at);
t← t+ 1;

end

Process 2 operating at 10 Hz;
while not fall do

ẑasync ← φ(xt−k:k, at−k−1:k−1);
end

III. ADDITIONAL REAL-WORLD ADAPTATION ANAYLSIS

In addition to the oil-walking experiments in Figure 4 of the
main paper, we also analyze the gait patterns and the torque
profile for the mass adaptation case, shown in Figure 2. We
throw a payload of 5kg on the back of the robot in the middle
of a run and plot the torque profile of the knee, gait pattern,
and the 2th and 7th components of the extrinsics vector ẑt
as shown in Figure 2. We observe that the additional payload
disturbs the regular motion of the robot, after which it enters
the adaptation phase and finally recovers from the disturbance.
When the payload lands on the robot, it is noticeable that the
plotted components of the extrinsics vector change in response
to the slip. Post adaptation, we see that the torque stabilizes
to a higher magnitude than before to account for the payload
and the gait time period is roughly recovered.

IV. ADDITIONAL SIMULATION TESTINGS

In Figure 3, we further test RMA in extreme simulated
environments and show its performance in three types of
environment variations: the payloads added on the base of
the A1 robot, the terrain elevation variation (z-scale used in
the fractual terrain generator, details in Section IV Simulation
Setup of the main paper), and the friction coefficient between
the robot feet and the terrain. We show the superiority of RMA
across all the cases in terms of Success Rate, TTF and Reward
as defined in Section I.
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Fig. 1: We plot the average step reward during the total 15, 000
training iterations. We show the converging trend of the reward
aggregating all reward terms, forward + lateral reward, and sum
of penalty terms. It also shows the necessity of applying a small
multiplier to the penalty terms at the beginning of training;
otherwise, the robot will only have negative experience initially
and unable to learn to walk quickly.
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Fig. 2: We analyze the change in behavior of RMA as we throw a payload of 5kg on the back of the robot. As a note, we have
flipped the images so that that movement appears from left to right which is why the label on the sandbag appears to be 2Kg.
We plot the torque profile of the knee and the gait pattern. The bottom plot shows the the 2th and 7th components of the
extrinsics vector ẑ predicted by the adaptation module. When the 5kg payload is thrown on the back of the robot, we see a dip
in the center of mass of the robot, which the adaptation module subsequently recovers from. In the bottom plot, we see a
jump in response in the plotted components of the estimated extrinsics vector, indicating that the additional payload has been
detected by the adaptation module. Note that post adaptation, the recovered gait time period is roughly similar to the original,
the torque magnitudes have increased and the extrinsics vector continues to capture the presence of the 5Kg payload on the
back of the robot.
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Fig. 3: Simulation Generalization Results: We further compare the generalization performance of our method to baseline
methods in simulation. We pick three physics parameters that may vary to a large degree in the real world: the payload on
robot, the terrain height variation, and the friction coefficient between the robot feet and the terrain. We set other environment
parameters according to the training range in TABLE II of the main paper. Baselines and metrics are defined in Section V of
the main paper and Section I. We report the mean and standard deviation of the performance of 3 randomly initialized policies,
which is characterized by the average of 100 testing trials in given settings. Despite no testing environment samples, RMA
performs the best, the closest to Expert’s performance. For reference, A1 robot without additional payloads weighs 12 kg, and
is 0.35 m tall. The static friction coefficient between rubber and concrete is 1.00.
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